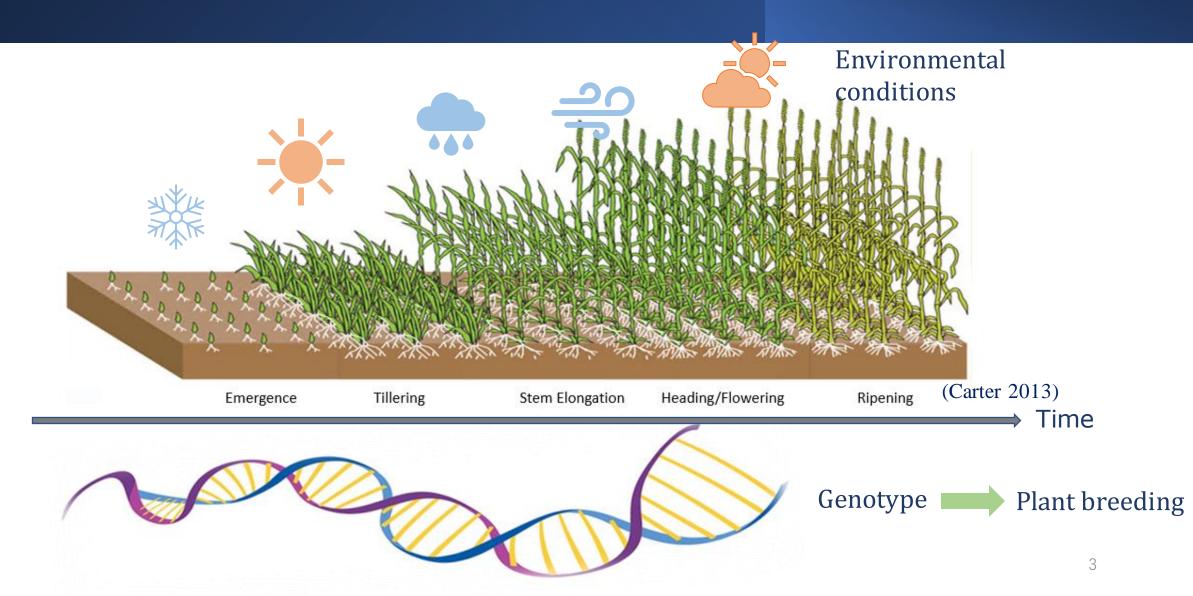
Machine learning for candidate crop growth model classification

Yingjie Shao

Understanding phenotype development will help plant breeding

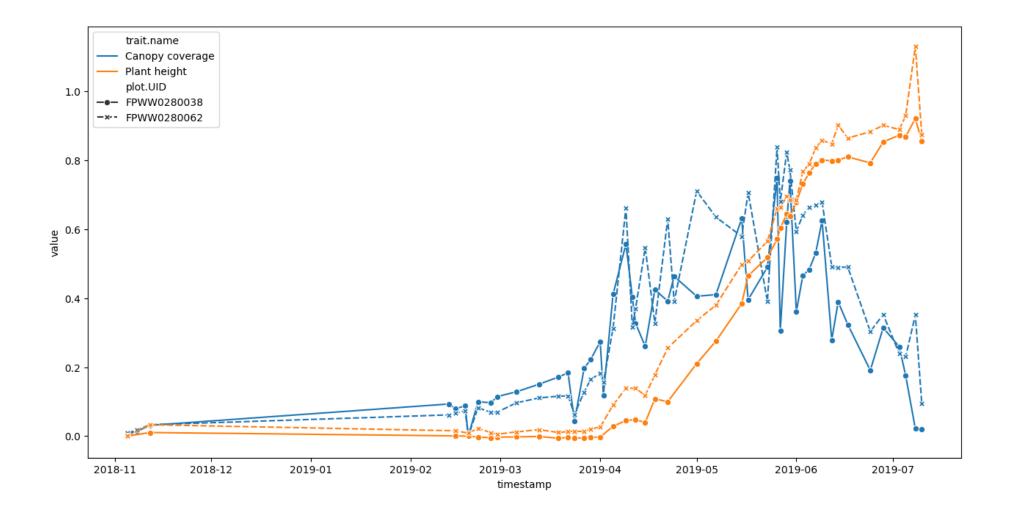
Phenotype = f(Genotype, Environment)



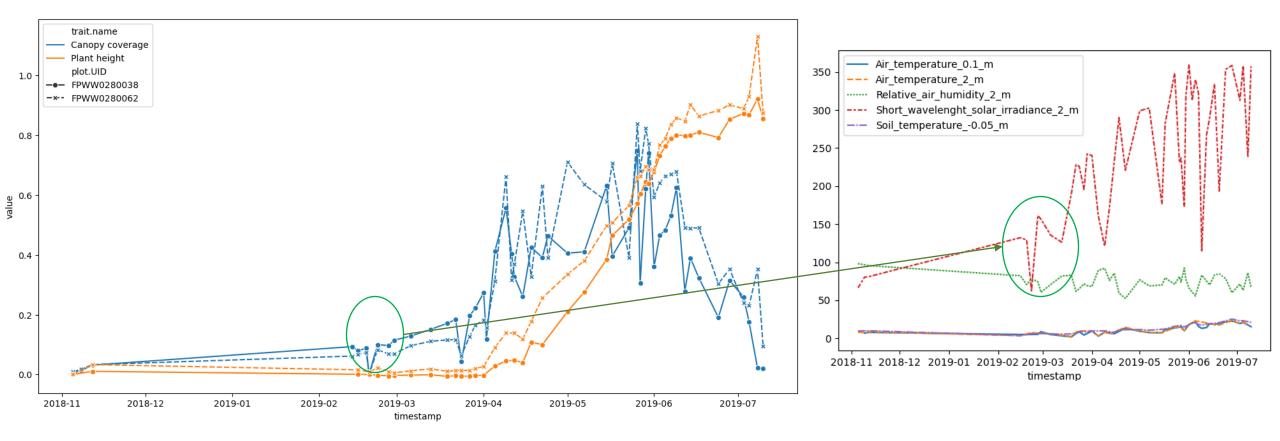
High-throughput phenotyping (HTP) Data

- Non-destructive phenotyping
- Produces multiple traits time series

Time Series Information in Plant Growth



Why Machine learning (ML)?



Extract patterns from time series (crop growth curves), map to non-linear environment effects

To link phenotype development with the changing environment...

In my MSc thesis, we test how ML works in a simpler case:

Can we use machine learning models to classify the crop growth curve into classes with different environmental limitations?

ODE model for dynamic crop modelling

- To generate simulated data...
- Model crop growth as derivatives with respect to time
- Describe dynamic non-linear system

Four types of growth model simulations

Growth Model*	Formula**	Index
Logistic model	$\frac{dM(t)}{dt} = r * M * \left(1 - \frac{M}{M_{max}}\right)$	1
Irradiance model	$\frac{dM(t)}{dt} = \left(r + \left(a * sin((2 * \frac{\pi}{365}) * t + \phi)\right)\right) * M * \left(1 - \frac{M}{M_{max}}\right)$	2
Temperature model	$\begin{aligned} r_{adapt} &= (1 + ((exp(\frac{T_{AL}}{temp_t + 273} - \frac{T_{AL}}{T_L} + exp(\frac{T_{AH}}{T_H} - \frac{T_{AH}}{temp_t + 273}))))^{-1} \\ & \frac{dM(t)}{dt} = r_{adapt} * r * M * (1 - \frac{M}{M_{max}}) \end{aligned}$	3
Allee model	$\frac{dM(t)}{dt} = r * M * \left(1 - \frac{M}{M_{max}}\right) * \left(\frac{M}{M - Ma}\right)$	4

(van Voorn, Boer et al. 2023)

ODE models describe plant phenotype development

Emerald, 1985

7000 0.3 Genotype: 6000 0.2 g006 5000 0.1 Parameters: r, Mx, A, phi, M(0) 4000 Residuals Biomass 0.1882 0.0 3000 5176.3181 -0.1 0.0992 2000 569.8848 -0.2 1000 5.3152 -0.3 0 20 40 60 80 100 120 20 80 100 120 40 60 0 0 Time (days) Time (days)

(van Voorn, Boer et al. 2023)

Fit ODE to daily biomass measurements generated from APSIM-Wheat platform

Irradiance model (model #2)

Data Simulation

- Stochastic differential equation (SDE):
 - Uncertainty of plant growth
 - Stochastic arises from environmental factors and measurement techniques
- Different growth models + different noise types

$$dX_t = a(X_t, t)dt + b(X_t, t)dW_t$$

Four different noise types

Noise type*	Formula		
Without noise	Noise = 0 Without added noise, it is an Ordinary Differential equation		
The highest noise present in the middle of the time series			
Time-dependent noise	The present in the middle of the time series $Noise = 0.2 * \left(\left(2 * \frac{(timelength-t)}{timelength}\right) * \left(1 - \frac{(timelength-t)}{timelength}\right) \right)$		
— The highest noise present when we reach half of the maximum biomass			
The highest noise present when we reach half of the maximum biomass Biomass-dependent noise $Noise = 0.2 * ((2 * (M_{max} - x)/M_{max}) * (1 - (M_{max} - x)/M_{max}))$			
Independent noise	$Noise \sim N(0, 0.25)^{**}$		

Input Data set

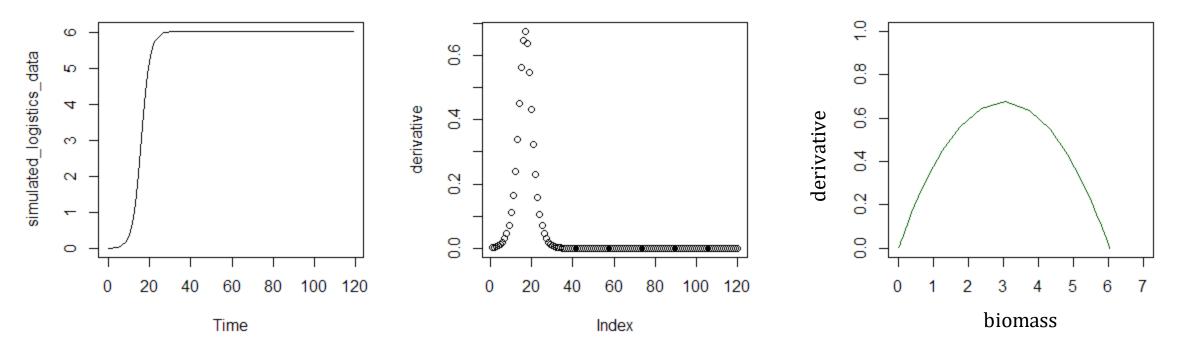
Input X: 4*4 SDE models, 300 samples per SDE model

For LSTM
modelDaily biomass shape = (120,1200,1)Daily biomass + the derivative of biomass shape = (120,1200,2)

For CNN The image of Daily biomass + the derivative of biomass shape = (1200, 2, 256, 256)

Input Y: growth model types (4 classes labels)

Example of curves without noise

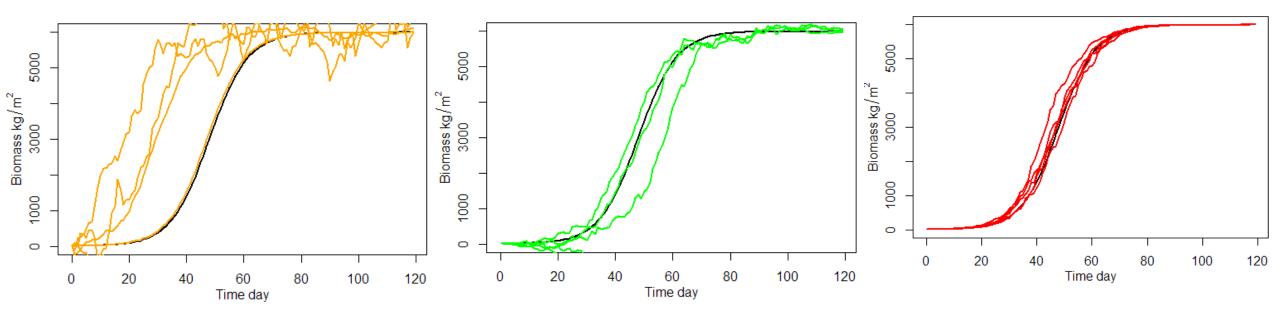


Biomass Growth curve

Biomass derivative against days

Biomass derivative against biomass

Biomass growth curve for different noise types

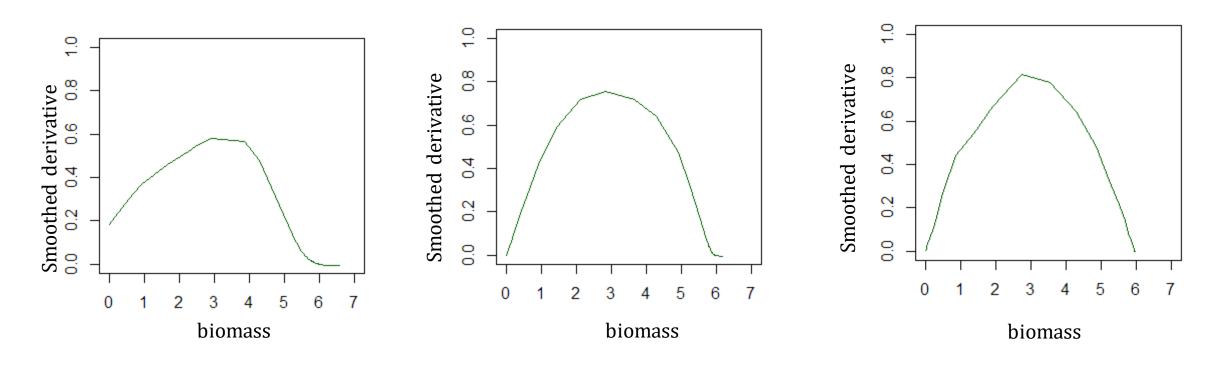


Independent noise

Time-dependent noise

Biomass-dependent noise

Biomass derivative against biomass for different noise types



Independent noise

Time-dependent noise

Biomass-dependent noise

Smoothed derivative based on pspline (nkots=36)

Input Data preprocessing

Input X:

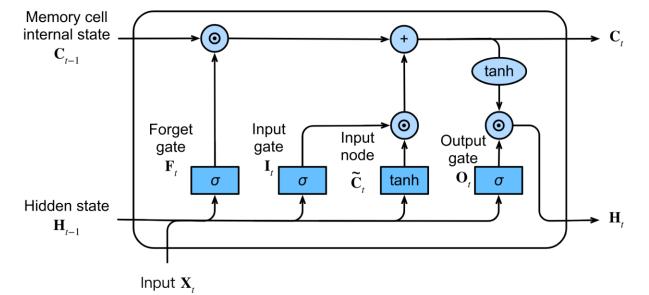
split based on noise type -> models are trained separately for four noise types. Scaling before feeding into neural networks $z = \frac{x-\mu}{s}$

Input Y: One-hot encoded growth model types

 $[1,0,0,0] \\ [0,1,0,0] \\ [0,0,1,0] \\ [0,0,0,1]$

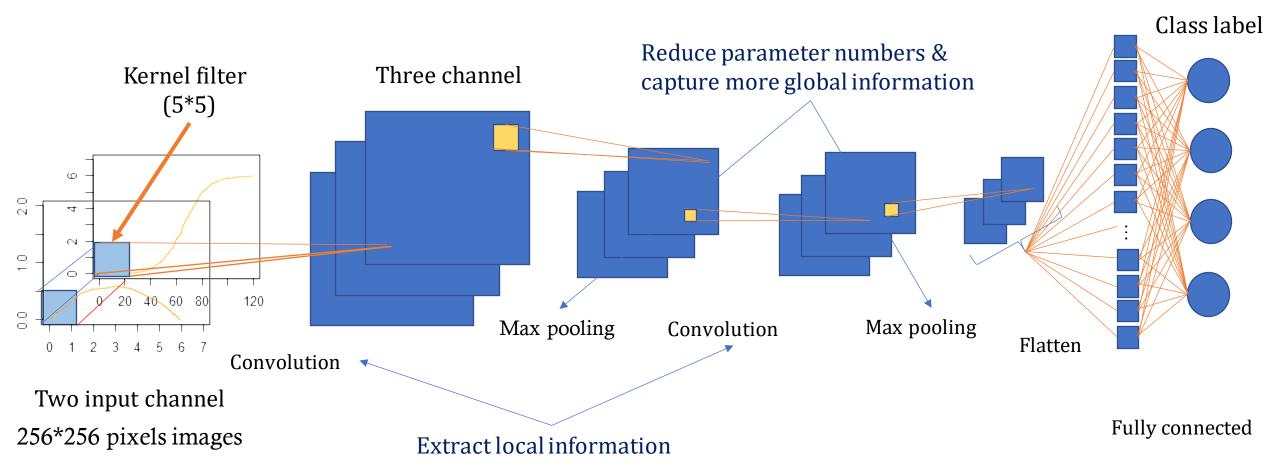
LSTM Model

- Two LSTM layer + fully connected layer
- Time series sequences as input

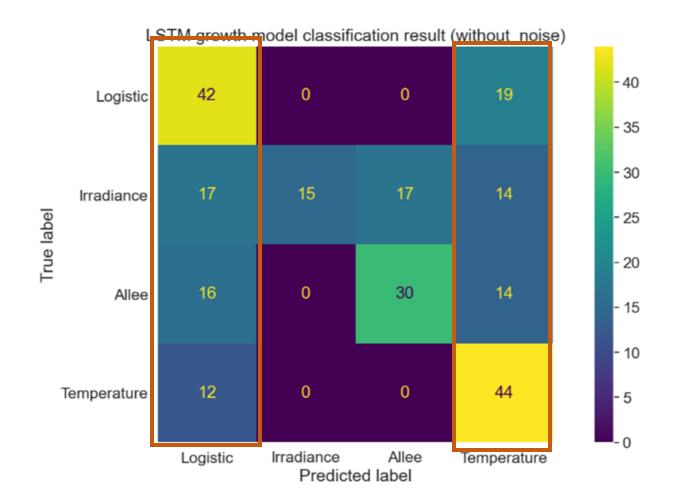


(Zhang, Lipton et al. 2021)

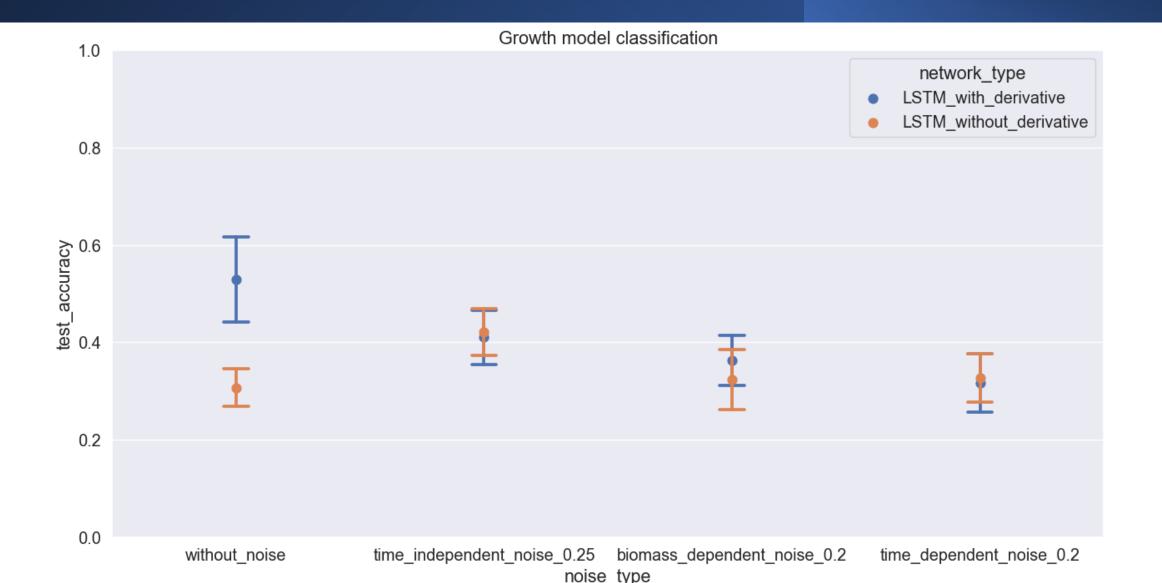
CNN Model



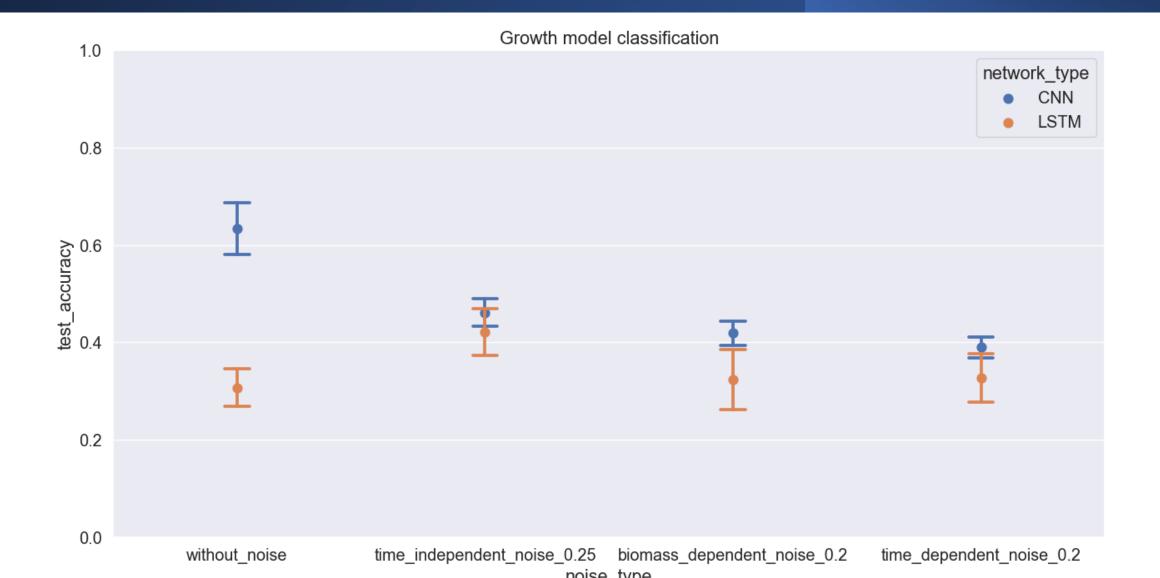
The model tends to classify samples into logistic or temperature class



Added Derivate Information Improves Accuracy



Growth Model Classification Comparison



Conclusion& Discussion

Adding derivative information improves prediction accuracy ->

Extracted features from differential equations and combined them with raw data

Both models give relatively high accuracy ->

Combine CNN with LSTM and use previous knowledge to guide hyperparameter selection

Future Plan

Physical knowledge + neural network

CausalML

Knowledge gaps

Quantify dynamic genome effects within different environments

Combining process-based and data-driven models in plant studies

Causal discovery and estimation for time series (HTP data)

- Build accurate plant growth forecasting models by combining process-based models with neural networks
- Quantify G*E interactions in a dynamic system of plant growth
- > Discover causal relationships between phenotypes and environmental

factors

Thank you!

Questions?